首页> 外文OA文献 >Target Assignment in Robotic Networks: Distance Optimality Guarantees and Hierarchical Strategies
【2h】

Target Assignment in Robotic Networks: Distance Optimality Guarantees and Hierarchical Strategies

机译:机器人网络中的目标分配:距离最优保证   和分层策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the problem of multi-robot target assignment to minimize the totaldistance traveled by the robots until they all reach an equal number of statictargets. In the first half of the paper, we present a necessary and sufficientcondition under which true distance optimality can be achieved for robots withlimited communication and target-sensing ranges. Moreover, we provide anexplicit, non-asymptotic formula for computing the number of robots needed toachieve distance optimality in terms of the robots' communication andtarget-sensing ranges with arbitrary guaranteed probabilities. The same boundsare also shown to be asymptotically tight. In the second half of the paper, we present suboptimal strategies for usewhen the number of robots cannot be chosen freely. Assuming first that alltargets are known to all robots, we employ a hierarchical communication modelin which robots communicate only with other robots in the same partitionedregion. This hierarchical communication model leads to constant approximationsof true distance-optimal solutions under mild assumptions. We then revisit thelimited communication and sensing models. By combining simple rendezvous-basedstrategies with a hierarchical communication model, we obtain decentralizedhierarchical strategies that achieve constant approximation ratios with respectto true distance optimality. Results of simulation show that the approximationratio is as low as 1.4.
机译:我们研究了多机器人目标分配的问题,以最大程度地减少机器人所经过的总距离,直到它们都达到相同数量的静态目标为止。在本文的上半部分,我们提出了一个必要和充分的条件,在这种条件下,对于具有有限的通信和目标感测范围的机器人,可以实现真正的距离最优。此外,我们提供了一个明确的非渐近公式,用于根据机器人的通信和目标感知范围以及任意保证的概率来计算实现距离最优所需的机器人数量。同样的界限也被证明是渐近严格的。在本文的后半部分,当无法自由选择机器人数量时,我们提出了次优的使用策略。首先假设所有目标都是所有机器人都知道的,我们采用了层次化的通信模型,其中机器人仅与同一分区内的其他机器人进行通信。在温和的假设下,这种分层的通信模型导致了真实距离最优解的恒定近似。然后,我们重新审视有限的通信和感知模型。通过将基于集合点的简单策略与分层通信模型相结合,我们获得了分散的分层策略,该策略相对于真实距离最优实现了恒定的近似比率。仿真结果表明,近似比低至1.4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号